Novel platform technology for modular mucosal vaccine that protects against streptococcus
نویسندگان
چکیده
The upper respiratory tract (URT) is the major entry site for human pathogens and strategies to activate this network could lead to new vaccines capable of preventing infection with many pathogens. Group A streptococcus (GAS) infections, causing rheumatic fever, rheumatic heart disease, and invasive disease, are responsible for substantial morbidity and mortality. We describe an innovative vaccine strategy to induce mucosal antibodies of significant magnitude against peptide antigens of GAS using a novel biocompatible liposomal platform technology. The approach is to encapsulate free diphtheria toxoid (DT), a standard vaccine antigen, within liposomes as a source of helper T-cell stimulation while lipidated peptide targets for B-cells are separately displayed on the liposome surface. As DT is not physically conjugated to the peptide, it is possible to develop modular epitopic constructs that simultaneously activate IgA-producing B-cells of different and complementary specificity and function that together neutralize distinct virulence factors. An inflammatory cellular immune response is also induced. The immune response provides profound protection against streptococcal infection in the URT. The study describes a new vaccine platform for humoral and cellular immunity applicable to the development of vaccines against multiple mucosal pathogens.
منابع مشابه
Mucosal vaccine made from live, recombinant Lactococcus lactis protects mice against pharyngeal infection with Streptococcus pyogenes.
A novel vaccine (LL-CRR) made from live, nonpathogenic Lactococcus lactis that expresses the conserved C-repeat region (CRR) of M protein from Streptococcus pyogenes serotype 6 was tested in mice. Nasally vaccinated mice produced CRR-specific salivary immunoglobulin A (IgA) and serum IgG. Subcutaneously vaccinated mice produced CRR-specific serum IgG but not salivary IgA. A combined regimen pro...
متن کاملIntranasal immunization with heat-inactivated Streptococcus pneumoniae protects mice against systemic pneumococcal infection.
In order to study the mucosal and serum antibody response to polysaccharide-encapsulated bacteria in mice, a preparation of heat-inactivated Streptococcus pneumoniae type 4 was administered, with and without cholera toxin, at various mucosal sites. It appeared that intranasal immunization of nonanesthesized animals was superior to either oral, gastric, or colonic-rectal antigen delivery with re...
متن کاملOral immunization with recombinant lactobacillus plantarum induces a protective immune response in mice with Lyme disease.
Mucosal immunization is advantageous over other routes of antigen delivery because it can induce both mucosal and systemic immune responses. Our goal was to develop a mucosal delivery vehicle based on bacteria generally regarded as safe, such as Lactobacillus spp. In this study, we used the Lyme disease mouse model as a proof of concept. We demonstrate that an oral vaccine based on live recombi...
متن کاملChitosan-based Nanoparticles in Mucosal Vaccine Delivery
Most infectious diseases are caused by pathogenic infiltrations from the mucosal tract. Nowadays, the use of vaccines has been widely investigated for the prevention of different infectious diseases, infertility, immune disorders, malignancies, and allergies. Broad-spectrum adjuvant substances have been studied for immune system stimulation with a greater efficiency against specific antigens. V...
متن کاملStreptococcus pneumoniae Attenuated Strain SPY1 with an Artificial Mineral Shell Induces Humoral and Th17 Cellular Immunity and Protects Mice against Pneumococcal Infection
Streptococcus pneumoniae is a major pathogen leading to substantial morbidity and mortality in children under 5 years of age. Vaccination is an effective strategy to prevent S. pneumoniae infection. SPY1 is a pneumococcal vaccine candidate strain obtained in our previous study. To improve its stability and immunogencity, in this study, we constructed the SPY1ΔlytA strain that lacks autolysin ac...
متن کامل